Tuesday, 24 October 2017

Exponentieller Gleitender Mittelwert Initial Value


Vorhersage von Smoothing Techniques Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Bereichen von Anwendungen im Abschnitt MENU auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die zeitlich geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken, wenn richtig angewandt, zeigt deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge beginnend mit der linken oberen Ecke und den Parametern ein, und klicken Sie dann auf die Schaltfläche Berechnen, um eine Prognose für eine Periode zu erhalten. Leere Kästen sind nicht in den Berechnungen enthalten, aber Nullen sind. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Daten-Matrix zu bewegen, verwenden Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Untersuchung seines Graphen aufgezeigt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Condition Prognose Modellierung. Moving Averages: Gleitende Durchschnitte zählen zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten hervorzuheben. Exponentialglättung: Dies ist ein sehr populäres Schema, um eine geglättete Zeitreihe zu erzeugen. Während in den gleitenden Durchschnitten die früheren Beobachtungen gleich gewichtet werden, weist Exponentialglättung exponentiell abnehmende Gewichte zu, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen sind relativ mehr Gewicht in der Prognose gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser im Umgang mit Trends. Triple Exponential Smoothing ist besser im Umgang mit Parabeltrends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstanten a. Entspricht in etwa einem einfachen gleitenden Durchschnitt der Länge (d. h. Periode) n, wobei a und n durch a 2 / (n1) OR n (2 - a) / a verknüpft sind. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19 Tage gleitenden Durchschnitt entsprechen. Und ein 40 Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt mit einer Glättungskonstanten gleich 0,04878 entsprechen. Holts Lineare Exponentialglättung: Angenommen, die Zeitreihe ist nicht saisonal, sondern zeigt Trend. Holts-Methode schätzt sowohl das aktuelle Niveau als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein Spezialfall der exponentiellen Glättung ist, indem die Periode des gleitenden Mittelwertes auf den ganzzahligen Teil von (2-Alpha) / Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft effektiv. Man kann jedoch eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten mittleren Absolutfehler (MA Error). Wie man mehrere Glättungsmethoden miteinander vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognosetechnik gibt, besteht der am weitesten verbreitete Ansatz darin, einen visuellen Vergleich mehrerer Prognosen zu verwenden, um deren Genauigkeit zu bewerten und unter den verschiedenen Prognosemethoden zu wählen. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognoseverfahren aufzeichnen und damit einen visuellen Vergleich erleichtern. Sie können die Vergangenheitsvorhersage von Smoothing Techniques JavaScript verwenden, um die letzten Prognosewerte basierend auf Glättungstechniken zu erhalten, die nur einen einzigen Parameter verwenden. Holt - und Winters-Methoden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuch und Fehler für die Parameter auszuwählen. Die einzelne exponentielle Glättung betont die kurzreichweite Perspektive, die sie den Pegel auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die auf eine Linie der kleinsten Quadrate zu den historischen Daten (oder transformierten historischen Daten) passt, repräsentiert die lange Reichweite, die auf dem Grundtrend konditioniert ist. Holts lineare exponentielle Glättung erfasst Informationen über die jüngsten Trend. Die Parameter im Holts-Modell sind Ebenenparameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist, und der Trends-Parameter sollte erhöht werden, wenn die jüngste Trendrichtung durch das Kausale beeinflusst wird. Kurzfristige Prognose: Beachten Sie, dass jeder JavaScript auf dieser Seite eine einstufige Prognose zur Verfügung stellt. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert an das Ende der Zeitreihendaten und klicken Sie dann auf die Schaltfläche Berechnen. Sie können diesen Vorgang einige Male wiederholen, um die benötigten kurzfristigen Prognosen zu erhalten. Exponentielle Glättungsgewichte nach Beobachtungen mit exponentiell abnehmenden Gewichten zur Prognose zukünftiger Werte Dieses Glättungsschema beginnt mit dem Setzen (S2) auf (y1), wobei (Si ) Steht für eine geglättete Beobachtung oder EWMA, und (y) steht für die ursprüngliche Beobachtung. Die Indizes beziehen sich auf die Zeitperioden (1,, 2,, ldots,, n). Für die dritte Periode (S3 alpha y2 (1-alpha) S2) und so weiter. Es gibt keine (S1) die geglättete Reihe beginnt mit der geglätteten Version der zweiten Beobachtung. Für einen beliebigen Zeitraum (t) wird der geglättete Wert (St) durch Berechnen von St alpha y (1-alpha) S ,,,,,,, 0 gefunden. Expandierte Gleichung für (S5) Zum Beispiel die erweiterte Gleichung für die geglättete Wert (S5) ist: S5 alpha links (1-alpha) 0 y (1-alpha) 1 y (1-alpha) 2 y rechts (1-alpha) 3 S2. Veranschaulicht Exponentialverhalten Dies veranschaulicht das exponentielle Verhalten. Die Gewichte (alpha (1-alpha) t) nehmen geometrisch ab und ihre Summe ist wie unten gezeigt einheitlich, wobei eine Eigenschaft der geometrischen Reihe verwendet wird: alpha sum (1-alpha) i alpha left frac right 1 - (1-alpha) T. Aus der letzten Formel können wir sehen, daß der Summationsterm zeigt, daß der Beitrag zum geglätteten Wert (St) in jedem aufeinanderfolgenden Zeitraum kleiner wird. Beispiel für (alpha 0,3) Let (alpha 0,3). Man beachte, dass die Gewichte (alpha (1-alpha) t) mit der Zeit exponentiell (geometrisch) abnehmen. Die Summe der quadratischen Fehler (SSE) 208.94. Der Mittelwert der quadratischen Fehler (MSE) ist die SSE / 11 19.0. Berechnen Sie für verschiedene Werte von (alpha) Das MSE wurde erneut für (alpha 0,5) berechnet und erwies sich als 16,29, so dass in diesem Fall ein (alpha) von 0,5 bevorzugt wäre. Können wir es besser machen Wir könnten die bewährte Trial-and-Error-Methode anwenden. Dies ist ein iteratives Verfahren, das mit einem Bereich von (alpha) zwischen 0,1 und 0,9 beginnt. Wir bestimmen die beste Ausgangswahl für (alpha) und suchen dann zwischen (alpha - Delta) und (alpha Delta). Wir könnten dies vielleicht noch einmal wiederholen, um die besten (alpha) bis 3 Dezimalstellen zu finden. Nichtlineare Optimierer können verwendet werden. Aber es gibt bessere Suchmethoden, wie das Marquardt-Verfahren. Dies ist ein nichtlinearer Optimierer, der die Summe der Quadrate der Residuen minimiert. Im Allgemeinen sollten die meisten gut entworfenen statistischen Softwareprogramme in der Lage sein, den Wert von (alpha) zu finden, der die MSE minimiert. Beispieldarstellung mit geglätteten Daten für 2 Werte von (alpha) EWMA 101 Der EWMA-Ansatz hat ein attraktives Merkmal: er benötigt relativ wenig gespeicherte Daten. Um unsere Schätzung an jedem Punkt zu aktualisieren, benötigen wir nur eine vorherige Schätzung der Varianzrate und des jüngsten Beobachtungswertes. Ein weiteres Ziel der EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen. Für kleine Werte beeinflussen jüngste Beobachtungen die Schätzung zeitnah. Für Werte, die näher an einem liegen, ändert sich die Schätzung langsam auf der Grundlage der jüngsten Änderungen in den Renditen der zugrundeliegenden Variablen. Die von JP Morgan erstellte und öffentlich zugängliche RiskMetrics-Datenbank nutzt die EWMA zur Aktualisierung der täglichen Volatilität. WICHTIG: Die EWMA-Formel geht nicht von einem lang anhaltenden durchschnittlichen Varianzniveau aus. So bedeutet das Konzept der Volatilität Reversion nicht von der EWMA erfasst. Die ARCH / GARCH Modelle sind dafür besser geeignet. Lambda Ein sekundäres Ziel von EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen, so dass für kleine Werte die jüngsten Beobachtungen die Schätzung sofort beeinflussen, und für Werte, die näher bei einem sind, ändert sich die Schätzung langsam auf die jüngsten Änderungen in den Renditen der zugrundeliegenden Variablen. Die RiskMetrics-Datenbank (erstellt von JP Morgan), die 1994 veröffentlicht wurde, verwendet das EWMA-Modell zur Aktualisierung der täglichen Volatilitätsschätzung. Das Unternehmen festgestellt, dass über eine Reihe von Marktvariablen, gibt dieser Wert der Prognose der Varianz, die am nächsten zu realisierten Varianz Rate kommen. Die realisierten Varianzraten an einem bestimmten Tag wurden als gleichgewichteter Durchschnitt der folgenden 25 Tage berechnet. Um den optimalen Wert von lambda für unseren Datensatz zu berechnen, müssen wir die realisierte Volatilität an jedem Punkt berechnen. Es gibt mehrere Methoden, so wählen Sie ein. Als nächstes wird die Summe der quadratischen Fehler (SSE) zwischen der EWMA-Schätzung und der realisierten Volatilität berechnet. Schließlich minimieren die SSE durch Variieren des Lambdawertes. Klingt einfach Es ist. Die größte Herausforderung besteht darin, einen Algorithmus zur Berechnung der realisierten Volatilität zu vereinbaren. Zum Beispiel wählten die Leute bei RiskMetrics die folgenden 25 Tage, um die realisierte Varianzrate zu berechnen. In Ihrem Fall können Sie einen Algorithmus wählen, der Tägliche Volumen-, HI / LO - und / oder OPEN-CLOSE Preise nutzt. FAQ Q 1: Können wir EWMA nutzen, um die Volatilität mehr als einen Schritt voraus zu schätzen (oder prognostizieren) Die EWMA-Volatilitätsdarstellung setzt keine langfristige Durchschnittsvolatilität voraus, so dass die EWMA für jeden Prognosehorizont über einen Schritt hinaus a Konstanter Wert: Gleitender Durchschnitt und exponentielle Glättungsmodelle Als ein erster Schritt bei der Überwindung von Mittelwertsmodellen, Zufallswegmodellen und linearen Trendmodellen können nicht-saisonale Muster und Trends mit einem gleitenden Durchschnitt oder Glättungsmodell extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird in der Periode t (m1) / 2 zentriert, was bedeutet, daß die Schätzung des lokalen Mittels dazu tendiert, hinter dem Wert zu liegen Wahren Wert des lokalen Mittels um etwa (m1) / 2 Perioden. Das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt ist also (m1) / 2 relativ zu der Periode, für die die Prognose berechnet wird: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten in der Region zu liegen Daten. Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige gehen Modell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt sie einen Großteil der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das durchschnittliche Alter der Daten in dieser Prognose beträgt 3 ((51) / 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-term einfachen gleitenden Durchschnitt ausprobieren, erhalten wir sogar noch bessere Prognosen und mehr eine nacheilende Wirkung: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) / 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-Term-Gleitender Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Serie L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell zu einem zufälligen Weg-Modell (ohne Wachstum) äquivalent ist. Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1/945 relativ zu dem Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1/945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 1 / 0,2961 3,4 Perioden, was ähnlich wie bei einem 6-Term-Simple Moving ist durchschnittlich. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Reihe etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird ein ARIMA-Modell mit einer nicht sonderbaren Differenz und einem MA (1) - Term mit konstantem, d. H. Einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als Neigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keine Tendenzen gibt (die in der Regel in Ordnung sind oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, so würde dies die Prognose für Y in der Periode t1 sein.) Dann sei Squot die doppelt geglättete Folge, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit und die erste Prognose der tatsächlichen ersten Beobachtung gleich) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineare Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die er anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstanten 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Durchschnittsalter der Daten, die für die Schätzung der lokalen Ebene der Serie verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1/946, wenn auch nicht exakt gleich es. In diesem Falle ergibt sich 1 / 0,006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, sondern dieselbe von der gleichen Größenordnung wie die Stichprobengröße von 100 ist , So dass dieses Modell ist im Durchschnitt über eine ganze Menge Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Seitenanfang.) Exponential Moving Average ohne For Loop happydude ltanonymoussehotmailgt schrieb in Beitrag lthe1oepfs61fred. mathworksgt. Gt dank dafür. Scheint ziemlich nah, aber immer noch ganz anders sein als die traditionellen EMA wie in der Finanzierung verwendet werden. Gt gt aus einer begrenzten Anzahl von Simulationen scheint es ganz anders zu sein als die EMA für etwa 60 Datenpunkte oder so. Gt gt irgendwelche Ideen, warum dies passieren könnte gt gt nb - die traditionelle EMA verwendet eine SMA als Anfangswert, weil die EMA-Formel fordert eine anfängliche EMA-Wert. Wie funktioniert die Filter-Funktion um diese Die Antwort ist, dass Filter nicht um sie herum zu bekommen. Für die ersten 30 Punkte geht der Filter von der Vorderflanke des heutigen Close-Vektors aus. Dies wird verzerren zumindest die ersten 30 Punkte Ihrer EMA Diese Werte über den Rand werden auf 0 gesetzt. Sie können den Effekt sehen, indem er einen konstanten nahen Preis hat. todaysClose one (100,1) 100 daysBack 30 alpha 2 / (daysBack 1) berechnen Glättungsfaktor Alpha-Koeffizient repmat (1-alpha, 1, daysBack). (1: daysBack) Anmerkung 1-alpha EMA-Filter (Koeffizient, Summe (Koeffizient ), todaysClose) Grundstück (todaysClose) halten auf einem Grundstück (EMA, r) Sie könnten der Vorderkante des Array-Pad durch den ersten Wert aus daysBack Werte zu replizieren und es dann weg abzustreifen. Das könnte helfen. Also: todaysClose cumsum (randn (100,1)) daysBack 30 Pad repmat (todaysClose (1), daysBack, 1) todaysClose padtodaysClose alpha 2 / (daysBack 1) berechnen Glättungsfaktor Alpha-Koeffizient repmat (1-alpha, 1, daysBack) das Pad Grundstück (todaysClose (31: end)): (Ende 31) entfernen halten auf einem Grundstück (EMA, r) durch.: (1 daysBack) Anmerkung 1-alpha EMA-Filter (Koeffizient, Summe (Koeffizient), todaysClose) EMA EMA geben sie krank einen Schuss :) Betreff: Exponential Moving Average ohne For-Schleife ab: Bwana happydude ltanonymoussehotmailgt in Nachricht lthe3krmglm1fred. mathworksgt schrieb. gt dank es krank geben einen Schuss :) Betreff: Exponential Moving Average ohne For-Schleife Von: David Bwana ltbwana. mukubwagmailgt in Nachricht lti1fpb3noh1fred. mathworksgt schrieb. Gt happydude ltanonymoussehotmailgt hat geschrieben in message lthe3krmglm1fred. mathworksgt. gt gt dank es schlecht ein Schuss :) gt gt alle gebaut in: www. mathworks / access / helpdesk / help / toolbox / Finanzen / tsmovavg Wer weiß, warum die Filterfunktion oben beschrieben eine andere Ausgabe zu erzeugen, dass der in movavg gebaut gibt Funktion Auf Mar 15, 4:50 am, david ltdavidtr. Gmailgt schrieb: gt Bwana ltbwana. muku. Gmailgt hat geschrieben in message lti1fpb3no. Fred. mathworksgt. Gt gt happydude ltanonymou. Hotmailgt hat geschrieben in message lthe3krmgl. Fred. mathworksgt. Gt gt gt dankt krank geben ihm einen Schuß :) gt gt gt alles eingebaute: www. mathworks / Zugang / helpdesk / Hilfe / Werkzeugkasten / Finanzierung / tsmovav. gt gt Wer weiß, warum die Filterfunktion oben beschrieben eine andere Ausgabe zu erzeugen, dass der in movavg Funktion gebaut gibt Meine Vermutung, dass seine ist, weil youve vermasselt. Aber Sie haben uns gezeigt, Ihren Code, so wie könnten wir Hallo wissen, der zweite Parameter der Filterfunktion sein sollte (1 / alpha-1) anstelle der Summe (Koeffizient) vielleicht, wenn Sie die rekursive Formel der EMA erweitern, werden Sie Finden Sie diesen Begriff. P. S. (1 / alpha-1) der Wert ist, auf den die Summe des Koeffizienten konvergiert. warum ein approxim Wert anstelle des richtigen Verwendung einer oder bin ich etwas fehlt Matthew Whitaker ltmattlwhitakerREMOVEgmailgt schrieb in Nachricht lthdv98tdcd1fred. mathworksgt. gt versuchen diesen Code: gt todaysClose cumsum (randn (100,1)) gt daysBack 30 gt alpha 2 / (daysBack 1) berechnen Glättungsfaktor alpha gt Koeffizient repmat (1-alpha, 1, daysBack). (1: daysBack) Anmerkung 1-alpha gt EMA-Filter (Koeffizient, Summe (Koeffizient), todaysClose) gt Grundstück (todaysClose) gt Halt auf gt Plot (EMA, r) gt gt Hoffe, dass dies hilft gt Matt W gt gt gt gt gt happydude ltanonymoussehotmailgt in Nachricht schrieb lthdv3c35um1fred. mathworksgt. Gt gt Hallo, Ich versuche, die rollende 30 Tage EMA für eine Zeitreihe zu finden, ohne eine for-Schleife zu verwenden (ich habe viele Daten). gt gt gt gt Als Beispiel / Test ist dies etwas, wie das, was ich will (unten) aber ich bin fest, dass mein Ergebnis ist nicht wirklich in der Nähe, wie es aussehen sollte. Wenn ich es in Excel oder setzen zusammen mit for-Schleife kommt es richtig, aber ich bin in der Dunkelheit, wenn ich diese Filter richtig unten verwendet. gt gt gt gt Kann mir jemand helfen gt gt gt gt todaysClose cumsum (randn (100,1)) gt gt daysBack 30 gt gt alpha 2 / (daysBack 1) berechnen Glättungsfaktor alpha gt gt gt gt einen Koeffizienten für die Filterfunktion gt vorbereiten gt Koeffizient repmat (alpha, 1, daysBack) (1: daysBack). gt gt Koeffizient Koeffizient / Summe (Koeffizient) gt gt gt gt EMA-Filter (Koeffizient, 1, todaysClose) gt gt gt gt gt gt PS dies war einer der Beiträge, die ich sah groups. google/group/comp. soft-sys. matlab/tree/browsefrm/thread/7b5c0b3146432dd9/58e9d04b885a576arnum11done/group/comp. soft-sys. matlab/browsefrm/thread/7b5c0b3146432dd9/48bdf7f81cd8f1973Ftvc3D126doca1c5b8de7a7c428a gt gt diese gt gt ist auch, wo ich die obige Filtercode gt gt groups. google/group/comp. soft-sys. matlab/browsethread/thread/1d8d10d5b835550dtvc2qexponentialmovingaveragefilter happydude bekam in Nachricht lthdv3c35um1fred. mathworksgt schrieb. Gt Hallo, Ich versuche, die rollende 30 Tage EMA für eine Zeitreihe ohne Verwendung einer for-Schleife (ich habe viele Daten) zu finden. Gt gt Als Beispiel / Test das ist etwas wie, was ich will (unten) aber Im finden, dass mein Endergebnis nicht wirklich nah an, wie es aussehen sollte. Wenn ich es in Excel oder setzen zusammen mit for-Schleife kommt es richtig, aber ich bin in der Dunkelheit, wenn ich diese Filter richtig unten verwendet. gt gt Kann mir jemand helfen gt gt todaysClose cumsum (randn (100,1)) gt daysBack 30 gt alpha 2 / (daysBack 1) berechnen Glättung gt gt Faktor alpha einen Koeffizienten für die Filterfunktion gt Koeffizient repmat vorbereiten (alpha, 1, daysBack ) (1: TageZurück) gt Koeffizient Koeffizient / Summe (Koeffizient) gt gt EMA-Filter (Koeffizient, 1, todaysClose) gt gt gt PS dies war einer der Beiträge, die ich sah groups. google/group/comp. soft-sys. matlab/tree/browsefrm/thread/7b5c0b3146432dd9/58e9d04b885a576arnum11done/group/comp. soft-sys. matlab/browsefrm/thread/7b5c0b3146432dd9/48bdf7f81cd8f1973Ftvc3D126doca1c5b8de7a7c428a gt gt dies ist auch, wo ich die obige Filtercode gt groups. google/group/comp. soft-sys. matlab/browsethread/thread/1d8d10d5b835550dtvc2qexponentialmovingaveragefilter Hinweis bekam, dass die Koeffizienten für Daten aus der Vergangenheit sind nicht richtig. Die Formel lautet: Preis (t) alphaPreis (t-1) alpha (1-alpha) Preis (t-2) alpha (1-alpha) (1-k), 1, N) (1: N).repmat (k, 1, N) 1 Was ist eine Überwachungsliste, die Sie sich vorstellen können Ihre Merkliste als Threads, die Sie haben Lesezeichen. Sie können Tags, Autoren, Threads und sogar Suchergebnisse zu Ihrer Beobachtungsliste hinzufügen. Auf diese Weise können Sie leicht verfolgen Themen, die Sie interessiert sind in. Um Ihre Watch-Liste, klicken Sie auf die quotMy Newsreaderquot Link. Um Artikel zu Ihrer Watchlist hinzuzufügen, klicken Sie auf den Link "quotadd to watch listquot" am unteren Rand einer Seite. Wie füge ich einen Artikel zu meiner Merkliste hinzu Suche Um Suchkriterien zu Ihrer Merkliste hinzuzufügen, suchen Sie im Suchfeld nach dem gewünschten Suchbegriff. Klicken Sie auf den quotAddd diese Suche zu meinem watch listquot Link auf der Suchergebnisseite. Sie können auch einen Tag zu Ihrer Überwachungsliste hinzufügen, indem Sie nach dem Tag mit der Anweisung quottag suchen: tagnamequot wobei tagname der Name des Tags ist, das Sie ansehen möchten. Autor Um einen Autor zu Ihrer Beobachtungsliste hinzuzufügen, gehen Sie zur Autorenprofilseite und klicken Sie auf den quotAdd this author zu meinem watch listquot Link am oberen Rand der Seite. Sie können auch einen Autor zu Ihrer Watch-Liste hinzufügen, indem Sie zu einem Thread, dass der Autor gebucht hat und klicken Sie auf den quotAdd diesen Autor zu meinem watch listquot Link. Sie werden benachrichtigt, wenn der Autor eine Post macht. Thread Um einen Thread zu deiner Watchlist hinzuzufügen, geh zur Threadseite und klicke auf den Thread zu meinem Watchlistquot Link oben auf der Seite. Über Newsgroups, Newsreader und MATLAB Central Was sind Newsgroups Die Newsgroups sind ein weltweites Forum, das allen offen steht. Newsgroups werden verwendet, um eine breite Palette von Themen zu diskutieren, Ankündigungen machen und Handelsdateien. Diskussionen sind Threaded, oder gruppiert in einer Weise, die Sie eine gebuchte Nachricht und alle ihre Antworten in chronologischer Reihenfolge lesen können. Dies macht es einfach, den Faden des Gesprächs zu folgen, und zu sehen, whatrsquos bereits gesagt, bevor Sie Ihre eigene Antwort posten oder eine neue Buchung. Newsgroup-Inhalte werden von Servern verteilt, die von verschiedenen Organisationen im Internet gehostet werden. Nachrichten werden unter Verwendung von offenen Standardprotokollen ausgetauscht und verwaltet. Keine einzelne Entität ldquoownsrdquo die Newsgroups. Es gibt Tausende von Newsgroups, die jeweils ein einziges Thema oder ein bestimmtes Thema behandeln. Der MATLAB Central Newsreader platziert und zeigt Nachrichten in der comp. soft-sys. matlab-Newsgroup an. Wie lese oder poste ich in den Newsgroups Sie können den integrierten Newsreader auf der MATLAB Central-Website verwenden, um Nachrichten in dieser Newsgroup zu lesen und zu posten. MATLAB Central wird von MathWorks gehostet. Nachrichten, die über den MATLAB Central Newsreader veröffentlicht werden, werden von allen Benutzern der Newsgroups gesehen, unabhängig davon, wie sie auf die Newsgroups zugreifen. Es gibt mehrere Vorteile der Verwendung von MATLAB Central. Ein Konto Das MATLAB Central-Konto ist mit Ihrem MathWorks-Konto verknüpft. Verwenden Sie die E-Mail-Adresse Ihrer Wahl Mit dem MATLAB Central Newsreader können Sie eine alternative E-Mail-Adresse als Ihre Buchungsadresse definieren, um Unfälle in Ihrer primären Mailbox zu vermeiden und Spam zu reduzieren. Spam-Kontrolle Die meisten Newsgroup-Spam wird vom MATLAB Central Newsreader gefiltert. Tagging-Nachrichten können von jedem angemeldeten Benutzer mit einem entsprechenden Label versehen werden. Tags können als Schlüsselwörter verwendet werden, um bestimmte Dateien von Interesse zu finden, oder als eine Möglichkeit, Ihre Bookmarking-Einträge zu kategorisieren. Sie können wählen, andere zu erlauben, Ihre Umbauten anzusehen, und Sie können otherrsquo Umbauten als auch die der Gemeinschaft an sehen oder suchen. Tagging bietet eine Möglichkeit, sowohl die großen Trends und die kleineren, mehr obskuren Ideen und Anwendungen zu sehen. Beobachtungslisten Durch das Einrichten von Überwachungslisten können Sie über Updates informiert werden, die für Beiträge erstellt wurden, die von Autor, Thread oder Suchvariablen ausgewählt wurden. Ihre Benachrichtigungswünsche können per E-Mail (täglich digest oder sofort), im My Newsreader oder per RSS-Feed gesendet werden. Andere Möglichkeiten für den Zugriff auf die Newsgroups Verwenden Sie einen Newsreader über Ihre Schule, Arbeitgeber oder Internet Service Provider Pay for newsgroup Zugriff von einem kommerziellen Anbieter Verwenden Sie Google Groups Mathforum. org bietet einen Newsreader mit Zugriff auf die comp. soft sys. matlab newsgroup Führen Sie Ihre eigenen Server. Für typische Anleitungen siehe: www. slyck / ngpage2 Wählen Sie Ihr Land aus

No comments:

Post a comment